ROSTA Tensioner Devices

Maintenance-free tensioner systems for belt and chain drives
Easy to install – available in 7 standard sizes – wide range of accessories available
Customer Benefits from using ROSTA

• Guarantees the lowest possible maintenance outlay
• Is tensioned “for life” (belts)
• Transmits a constant torque
• Gentle belt handling – longer service life

• Prevents the polygon effect in the slack side
• Increases the chain contact arc
• Excludes any jumping of the chain links
• Causes the slack side to run tautly and almost silently

• Offers continuous contact pressure
• Compensates for wear on the scrapers
• Effectively dampens vibrations in the belt band
• Guarantee for clean conveyor belts
Tensioner Devices in Belt and Chain Drives

- Offers an extremely quiet chain run
- Reduces wear on rollers and bearings
- Effectively dissipates vibrations
- 3-fold slack compensation with “Boomerang®”

- Compensates for belt lengthening
- Prevents excessive slippage and over-heating
- Offers constant torque transfer
- Guarantees longer belt lifetimes

- Offers an exactly defined contact pressure
- Accurately transports workpieces
- Maintenance-free and long lasting
- Is a cost-effective alternative to pressure cylinders
Selection table

<table>
<thead>
<tr>
<th>Identification</th>
<th>Characteristics</th>
<th>Working temperature</th>
<th>Details</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard tensioner devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>Standard component</td>
<td>Steel parts ROSTA blue painted. Rubber quality Rubmix 10.</td>
<td>– 40 ° to + 80 ° C</td>
<td>Page 4.6</td>
</tr>
<tr>
<td>SE-G</td>
<td>Oil resistant</td>
<td>Steel parts galvanized. Rubber quality Rubmix 20. Marked with yellow dot.</td>
<td>– 30 ° to + 90 ° C</td>
<td>Page 4.6</td>
</tr>
<tr>
<td>SE-W</td>
<td>Heat resistant</td>
<td>Steel parts ROSTA blue painted. Rubber quality Rubmix 40. Marked with red dot. Tension force 40% less than SE.</td>
<td>– 35 ° to + 120 ° C max.</td>
<td>Page 4.6</td>
</tr>
<tr>
<td>Additional tensioner devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-R</td>
<td>Reinforced lever arm</td>
<td>Arm and inner core especially welded for use on combustion engines and compressors. Steel parts ROSTA blue painted. Marked with white ring</td>
<td></td>
<td>Page 4.6</td>
</tr>
<tr>
<td>SE-I</td>
<td>Stainless steel</td>
<td>For the use in food- and pharmaceutic industries. Material: GX5CrNi19-10. Exception: SE-I 40 made out of X5CrNi18-10.</td>
<td>– 40 ° to + 80 ° C</td>
<td>Page 4.6</td>
</tr>
<tr>
<td>SE-B</td>
<td>Boomerang®</td>
<td>For the tensioning of very long chain and belt drives (triple compensation). Steel parts ROSTA blue painted.</td>
<td>– 40 ° to + 80 ° C</td>
<td>Page 4.7</td>
</tr>
<tr>
<td>SE-F</td>
<td>Front mounting device</td>
<td>For installations on blind-hole frames (fixation from the front only). Steel parts ROSTA blue painted. Hex socket screw quality 12.9.</td>
<td></td>
<td>Page 4.7</td>
</tr>
<tr>
<td>SE-FE</td>
<td>Front mounting device</td>
<td>For installations on blind-hole frames (fixation from the front only). Steel parts black painted. Hex socket screw quality 12.9. Especially designed for engine applications.</td>
<td>see page 4.7</td>
<td>Page 4.7</td>
</tr>
<tr>
<td>Accessories chain drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprocket wheel set N</td>
<td>Allows accurate positioning of relevant chain track. Ball-bearings 2Z/C3, permanently lubricated.</td>
<td>– 40 ° to + 100 ° C</td>
<td>Page 4.8</td>
<td></td>
</tr>
<tr>
<td>Sprocket wheel N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain rider set P</td>
<td>For double sided use. Max. allowed chain speed 1.5 m/sec. Material: POM-H.</td>
<td>– 40 ° to + 100 ° C</td>
<td>Page 4.9</td>
<td></td>
</tr>
<tr>
<td>Chain rider P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories belt drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensioning roller R</td>
<td>Material: PA 6. Ball-bearings 2Z/C3, permanently lubricated.</td>
<td>– 35 ° to + 100 ° C</td>
<td>Page 4.10</td>
<td></td>
</tr>
</tbody>
</table>

Further information to customized elements and installation examples as from page 4.12.
General technology

The ROSTA tensioners should be installed on a stiff, even and clean machine part by means of the central bolt. The frictional connection on flange is usually fully sufficient for final positioning. The positioning notch on flange can be used to assure the tensioner additionally on uneven and dirty surfaces by setting a roller-pin.

Tensioning force F

The tensioning force can be continuously adjusted. The max. pre-tensioning angle is +30° out of neutral position. Tensioning force table for types SE / SE-G / SE-R / SE-F / SE-I by using hole-position “normal” for sprocket-, rider- and roller fixation.

<table>
<thead>
<tr>
<th>Size SE</th>
<th>Pre-tension < 10° F [N]</th>
<th>s [mm]</th>
<th>Pre-tension < 20° F [N]</th>
<th>s [mm]</th>
<th>Pre-tension < 30° F [N]</th>
<th>s [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>18 14</td>
<td>48 27</td>
<td>96 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>25 17</td>
<td>65 34</td>
<td>135 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>75 17</td>
<td>185 34</td>
<td>350 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>150 23</td>
<td>380 44</td>
<td>810 65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>280 30</td>
<td>720 60</td>
<td>1500 88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>520 39</td>
<td>1350 77</td>
<td>2650 113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>740 43</td>
<td>2150 86</td>
<td>4200 125</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SE-I 40: same tensioning force like SE 38.
SE-W: 40% lower tensioning force than standard versions (Rubmix 40 inserts).
SE-FE: see page 4.7

When fixing the sprockets, riders and rollers in arm-position “hard”, tensioning force will increase on about 25.%.

Mounting instructions

For further mounting instructions please consult the pages 4.9 – 4.11.

Z-configuration of sprockets or riders

If there is the need to install sprockets, riders or rollers on the outer arm-side of the tensioner, then the distance “Z” should be as little as possible to avoid a misalignment in element parallelism. Furthermore the pre-tension force should not exceed 50% of the capacity = max. pre-tension angle of ~20°.

Use of SE-B Boomerang® tensioners

In very long chain and belt drives it was recommendable to install on the slack-side several tensioners, in order to compensate occurring elongation. The “Boomerang” with its bent double-arm equipped with two chain sprockets or a combination of grooved pulley and flat-roller (belt-drives) offers a triple-compensation of chain and belt elongations, due to S-shape contact-arc.

Tensioner mounting

Tighten the flange screw slightly. Grip the housing with flat-wrench and set needful pre-tension by rotating the housing in the required direction. Tighten the central screw according the above mentioned tightening moment \(M_A \). Position flat-wrench close by the flange-bottom.
Tensioner Devices

Type SE/SE-G/SE-W

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J₁</th>
<th>J₂</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>T</th>
<th>U</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 11</td>
<td>06 011 001</td>
<td>35</td>
<td>51</td>
<td>5</td>
<td>M6</td>
<td>80</td>
<td>60</td>
<td>20</td>
<td>90</td>
<td>20</td>
<td>22</td>
<td>6</td>
<td>8</td>
<td>8.5</td>
<td>16.5</td>
<td>0.2</td>
</tr>
<tr>
<td>SE 11-G</td>
<td>06 013 201</td>
<td></td>
</tr>
<tr>
<td>SE 15</td>
<td>06 011 002</td>
<td>45</td>
<td>64</td>
<td>5</td>
<td>M8</td>
<td>100</td>
<td>80</td>
<td>25</td>
<td>112.5</td>
<td>25</td>
<td>30</td>
<td>8</td>
<td>8.5</td>
<td>10.5</td>
<td>20.8</td>
<td>0.4</td>
</tr>
<tr>
<td>SE 15-G</td>
<td>06 013 202</td>
<td></td>
</tr>
<tr>
<td>SE 15-W</td>
<td>06 015 002</td>
<td></td>
</tr>
<tr>
<td>SE 18</td>
<td>06 011 003</td>
<td>58</td>
<td>79</td>
<td>7</td>
<td>M10</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>115</td>
<td>30</td>
<td>35</td>
<td>10.5</td>
<td>8.5</td>
<td>10.5</td>
<td>25.3</td>
<td>0.6</td>
</tr>
<tr>
<td>SE 18-G</td>
<td>06 013 203</td>
<td></td>
</tr>
<tr>
<td>SE 18-W</td>
<td>06 015 003</td>
<td></td>
</tr>
<tr>
<td>SE 27</td>
<td>06 011 004</td>
<td>78</td>
<td>108</td>
<td>8</td>
<td>M12</td>
<td>130</td>
<td>100</td>
<td>50</td>
<td>155</td>
<td>40</td>
<td>52</td>
<td>15</td>
<td>10.5</td>
<td>12.5</td>
<td>34.3</td>
<td>1.7</td>
</tr>
<tr>
<td>SE 27-G</td>
<td>06 013 204</td>
<td></td>
</tr>
<tr>
<td>SE 27-W</td>
<td>06 015 004</td>
<td></td>
</tr>
<tr>
<td>SE 38</td>
<td>06 011 005</td>
<td>95</td>
<td>140</td>
<td>10</td>
<td>M16</td>
<td>175</td>
<td>140</td>
<td>60</td>
<td>205</td>
<td>40</td>
<td>66</td>
<td>15</td>
<td>12.5</td>
<td>20.5</td>
<td>42.0</td>
<td>3.6</td>
</tr>
<tr>
<td>SE 38-G</td>
<td>06 013 205</td>
<td></td>
</tr>
<tr>
<td>SE 38-W</td>
<td>06 015 005</td>
<td></td>
</tr>
<tr>
<td>SE 45</td>
<td>06 011 006</td>
<td>115</td>
<td>200</td>
<td>12</td>
<td>M20</td>
<td>225</td>
<td>180</td>
<td>70</td>
<td>260</td>
<td>50</td>
<td>80</td>
<td>18</td>
<td>12.5</td>
<td>20.5</td>
<td>52.0</td>
<td>6.4</td>
</tr>
<tr>
<td>SE 45-G</td>
<td>06 013 206</td>
<td></td>
</tr>
<tr>
<td>SE 45-W</td>
<td>06 015 006</td>
<td></td>
</tr>
<tr>
<td>SE 50</td>
<td>06 011 007</td>
<td>130</td>
<td>210</td>
<td>20</td>
<td>M24</td>
<td>250</td>
<td>200</td>
<td>80</td>
<td>290</td>
<td>60</td>
<td>87</td>
<td>20</td>
<td>17</td>
<td>20.5</td>
<td>57.5</td>
<td>9.0</td>
</tr>
<tr>
<td>SE 50-G</td>
<td>06 013 207</td>
<td></td>
</tr>
<tr>
<td>SE 50-W</td>
<td>06 015 007</td>
<td></td>
</tr>
</tbody>
</table>

Type SE-R

Tensioning element with strengthened tensioning arm

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J₁</th>
<th>J₂</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>T</th>
<th>U</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-R 15</td>
<td>06 011 702</td>
<td>45</td>
<td>64</td>
<td>5</td>
<td>M8</td>
<td>100</td>
<td>80</td>
<td>25</td>
<td>112.5</td>
<td>25</td>
<td>30</td>
<td>8</td>
<td>8.5</td>
<td>10.5</td>
<td>20.8</td>
<td>0.4</td>
</tr>
<tr>
<td>SE-R 18</td>
<td>06 011 703</td>
<td>58</td>
<td>79</td>
<td>7</td>
<td>M10</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>115</td>
<td>30</td>
<td>35</td>
<td>10.5</td>
<td>8.5</td>
<td>10.5</td>
<td>25.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Type SE-I

Tensioning element made out of stainless steel, INOX

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J₁</th>
<th>J₂</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>T</th>
<th>U</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-I 15</td>
<td>06 071 111</td>
<td>45</td>
<td>64</td>
<td>5</td>
<td>M8</td>
<td>100</td>
<td>80</td>
<td>25</td>
<td>112.5</td>
<td>25</td>
<td>30</td>
<td>8</td>
<td>8.5</td>
<td>10.5</td>
<td>20.8</td>
<td>0.4</td>
</tr>
<tr>
<td>SE-I 18</td>
<td>06 071 112</td>
<td>58</td>
<td>79</td>
<td>7</td>
<td>M10</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>115</td>
<td>30</td>
<td>35</td>
<td>10.5</td>
<td>8.5</td>
<td>10.5</td>
<td>25.3</td>
<td>0.7</td>
</tr>
<tr>
<td>SE-I 27</td>
<td>06 071 113</td>
<td>78</td>
<td>108</td>
<td>8</td>
<td>M12</td>
<td>130</td>
<td>100</td>
<td>50</td>
<td>155</td>
<td>40</td>
<td>52</td>
<td>15</td>
<td>10.5</td>
<td>12.5</td>
<td>34.3</td>
<td>2.1</td>
</tr>
<tr>
<td>SE-I 38</td>
<td>06 071 114</td>
<td>95</td>
<td>140</td>
<td>10</td>
<td>M16</td>
<td>175</td>
<td>140</td>
<td>60</td>
<td>205</td>
<td>40</td>
<td>66</td>
<td>15</td>
<td>12.5</td>
<td>20.5</td>
<td>42</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Further product and performance datas on pages 4.4–4.5.

www.rosta.com
Tensioner Devices

Type SE-B
Boomerang®

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J1</th>
<th>J2</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-B 18</td>
<td>06 021 003</td>
<td>58</td>
<td>78</td>
<td>10</td>
<td>6</td>
<td>M10</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>115</td>
<td>30</td>
<td>35</td>
<td>10.5</td>
<td>8.5</td>
<td>10.5</td>
<td>25.3</td>
<td>0.8</td>
</tr>
<tr>
<td>SE-B 27</td>
<td>06 021 004</td>
<td>78</td>
<td>108</td>
<td>10</td>
<td>8</td>
<td>M12</td>
<td>130</td>
<td>100</td>
<td>50</td>
<td>155</td>
<td>40</td>
<td>52</td>
<td>15</td>
<td>10.5</td>
<td>12.5</td>
<td>34.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Type SE-F
Tensioning element with front mounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J1</th>
<th>J2</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-F 15</td>
<td>06 061 002</td>
<td>45</td>
<td>64</td>
<td>5</td>
<td>M6</td>
<td>100</td>
<td>80</td>
<td>25</td>
<td>112.5</td>
<td>12</td>
<td>30</td>
<td>8</td>
<td>8.5</td>
<td>10</td>
<td>10.5</td>
<td>20.8</td>
<td>0.4</td>
</tr>
<tr>
<td>SE-F 18</td>
<td>06 061 003</td>
<td>58</td>
<td>79</td>
<td>10</td>
<td>M8</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>115</td>
<td>18</td>
<td>35</td>
<td>10.5</td>
<td>8.5</td>
<td>11</td>
<td>10.5</td>
<td>25.3</td>
<td>0.7</td>
</tr>
<tr>
<td>SE-F 27</td>
<td>06 061 004</td>
<td>78</td>
<td>108</td>
<td>10</td>
<td>M10</td>
<td>130</td>
<td>100</td>
<td>50</td>
<td>155</td>
<td>17</td>
<td>52</td>
<td>15</td>
<td>10.5</td>
<td>12.5</td>
<td>34.3</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>SE-F 38</td>
<td>06 061 005</td>
<td>95</td>
<td>140</td>
<td>10</td>
<td>M12</td>
<td>175</td>
<td>140</td>
<td>60</td>
<td>205</td>
<td>16</td>
<td>66</td>
<td>15</td>
<td>12.5</td>
<td>17</td>
<td>20.5</td>
<td>42.0</td>
<td>3.7</td>
</tr>
<tr>
<td>SE-F 45</td>
<td>06 061 006</td>
<td>115</td>
<td>200</td>
<td>12</td>
<td>M16</td>
<td>225</td>
<td>180</td>
<td>70</td>
<td>260</td>
<td>32</td>
<td>80</td>
<td>18</td>
<td>12.5</td>
<td>24</td>
<td>20.5</td>
<td>52.0</td>
<td>6.9</td>
</tr>
<tr>
<td>SE-F 50</td>
<td>06 061 007</td>
<td>130</td>
<td>210</td>
<td>20</td>
<td>M20</td>
<td>250</td>
<td>200</td>
<td>80</td>
<td>290</td>
<td>23</td>
<td>87</td>
<td>20</td>
<td>17</td>
<td>27</td>
<td>20.5</td>
<td>57.5</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Type SE-FE
Tensioning element with front mounting for engine (cooling compressors, fan drives)

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J1</th>
<th>J2</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-FE 27</td>
<td>06 093 904</td>
<td>78</td>
<td>110</td>
<td>10</td>
<td>M10</td>
<td>130</td>
<td>100</td>
<td>50</td>
<td>155</td>
<td>16</td>
<td>52</td>
<td>15</td>
<td>10.5</td>
<td>15</td>
<td>12.5</td>
<td>34.3</td>
<td>2.1</td>
</tr>
<tr>
<td>SE-FE 38</td>
<td>06 095 905</td>
<td>95</td>
<td>120</td>
<td>10</td>
<td>M12</td>
<td>145</td>
<td>110</td>
<td>60</td>
<td>175</td>
<td>35</td>
<td>66</td>
<td>15</td>
<td>12.5</td>
<td>17</td>
<td>22.0</td>
<td>42.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>Rubber Type</th>
<th>Working temperature</th>
<th>SE-FE marked with</th>
<th>Pre-tension <10° (F, N)</th>
<th>Pre-tension <20° (F, N)</th>
<th>Pre-tension <30° (F, N)</th>
<th>s [mm]</th>
<th>s [mm]</th>
<th>s [mm]</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-FE 27</td>
<td>06 093 904</td>
<td>Rubmix 20</td>
<td>–30°C to +90°C</td>
<td>yellow dot</td>
<td>150</td>
<td>23</td>
<td>380</td>
<td>44</td>
<td>810</td>
<td>65</td>
<td>RAL9005 (black) water-soluble paint thickness 40–60 µm</td>
</tr>
<tr>
<td>SE-FE 38</td>
<td>06 095 905</td>
<td>Rubmix 40</td>
<td>–35°C to +120°C max.</td>
<td>red dot</td>
<td>170</td>
<td>25</td>
<td>425</td>
<td>50</td>
<td>870</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

Further product and performance datas on pages 4.4–4.5.
Tensioner Devices

Sprocket wheel type N

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Number of teeth W</th>
<th>Number of teeth L</th>
<th>Torque hex nut 0.5d [Nm]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 510 001</td>
<td>15</td>
<td>M10</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>06 510 002</td>
<td>15</td>
<td>M10</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>06 510 003</td>
<td>15</td>
<td>M12</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>06 510 004</td>
<td>15</td>
<td>M12</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>06 510 005</td>
<td>15</td>
<td>M20</td>
<td>100</td>
<td>165</td>
</tr>
<tr>
<td>06 510 006</td>
<td>13</td>
<td>M20</td>
<td>100</td>
<td>165</td>
</tr>
<tr>
<td>06 510 007</td>
<td>13</td>
<td>M20</td>
<td>100</td>
<td>165</td>
</tr>
<tr>
<td>06 510 008</td>
<td>11</td>
<td>M20</td>
<td>140</td>
<td>165</td>
</tr>
</tbody>
</table>

Sprocket wheel set type N

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Number of teeth W</th>
<th>Number of teeth L</th>
<th>Torque hex nut 0.5d [Nm]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 520 001</td>
<td>15</td>
<td>M10</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>06 520 002</td>
<td>15</td>
<td>M10</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>06 520 003</td>
<td>15</td>
<td>M12</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>06 520 004</td>
<td>15</td>
<td>M12</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>06 520 005</td>
<td>15</td>
<td>M20</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>06 520 006</td>
<td>13</td>
<td>M20</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>06 520 007</td>
<td>13</td>
<td>M20</td>
<td>140</td>
<td>165</td>
</tr>
<tr>
<td>06 520 008</td>
<td>11</td>
<td>M20</td>
<td>140</td>
<td>165</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Number of teeth A</th>
<th>Number of teeth B</th>
<th>Number of teeth C</th>
<th>Number of teeth D</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 530 001</td>
<td>15</td>
<td>10</td>
<td>53</td>
<td>9</td>
<td>45.81</td>
</tr>
<tr>
<td>06 530 002</td>
<td>15</td>
<td>10</td>
<td>72</td>
<td>12</td>
<td>61.08</td>
</tr>
<tr>
<td>06 530 003</td>
<td>15</td>
<td>12</td>
<td>72</td>
<td>12</td>
<td>61.08</td>
</tr>
<tr>
<td>06 530 004</td>
<td>15</td>
<td>12</td>
<td>91</td>
<td>15</td>
<td>76.36</td>
</tr>
<tr>
<td>06 530 005</td>
<td>15</td>
<td>20</td>
<td>91</td>
<td>15</td>
<td>76.36</td>
</tr>
<tr>
<td>06 530 006</td>
<td>15</td>
<td>12</td>
<td>11.1</td>
<td>12</td>
<td>91.63</td>
</tr>
<tr>
<td>06 530 007</td>
<td>15</td>
<td>20</td>
<td>11.1</td>
<td>15</td>
<td>91.63</td>
</tr>
<tr>
<td>06 530 008</td>
<td>13</td>
<td>20</td>
<td>16.1</td>
<td>15</td>
<td>106.14</td>
</tr>
<tr>
<td>06 530 009</td>
<td>13</td>
<td>20</td>
<td>18.5</td>
<td>15</td>
<td>132.67</td>
</tr>
<tr>
<td>06 530 010</td>
<td>11</td>
<td>20</td>
<td>24.1</td>
<td>15</td>
<td>135.23</td>
</tr>
</tbody>
</table>
Chain Drives

Chain rider set type P

Chain rider type P

For an ideal positioning of the chain rider/s on the threaded rod we do recommend to position them on each side by means of two nuts, secured against each other, with some play for swivelling into working position.

<table>
<thead>
<tr>
<th>Roller chain ANSI</th>
<th>DIN 8187</th>
<th>Type</th>
<th>Art. No.</th>
<th>W</th>
<th>L X Y Z</th>
<th>Torque hex nut 0.5d [Nm]</th>
<th>Adjusting range track R</th>
<th>Size SE</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 ISO 06 B-1</td>
<td>P3/8" – 8 S</td>
<td>06 550 001</td>
<td>M8</td>
<td>45</td>
<td>74</td>
<td>37</td>
<td>10.2</td>
<td>11</td>
<td>19 – 34</td>
</tr>
<tr>
<td>40 ISO 08 B-1</td>
<td>P1/2" – 10 S</td>
<td>06 550 002</td>
<td>M10</td>
<td>55</td>
<td>96</td>
<td>48</td>
<td>13.9</td>
<td>20</td>
<td>23 – 141</td>
</tr>
<tr>
<td>50 ISO 10 B-1</td>
<td>P5/8" – 10 S</td>
<td>06 550 003</td>
<td>M10</td>
<td>55</td>
<td>126</td>
<td>63</td>
<td>16.6</td>
<td>20</td>
<td>24 – 39</td>
</tr>
<tr>
<td>60 ISO 12 B-1</td>
<td>P3/4" – 12 S</td>
<td>06 550 004</td>
<td>M12</td>
<td>80</td>
<td>148</td>
<td>72</td>
<td>19.5</td>
<td>35</td>
<td>30 – 61</td>
</tr>
</tbody>
</table>

Duplex “D”

<table>
<thead>
<tr>
<th>Roller chain ANSI</th>
<th>DIN 8187</th>
<th>Type</th>
<th>Art. No.</th>
<th>W</th>
<th>L X Y Z</th>
<th>Torque hex nut 0.5d [Nm]</th>
<th>Adjusting range track R</th>
<th>Size SE</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 ISO 06 B-2</td>
<td>P3/8" – 8 D</td>
<td>06 560 001</td>
<td>M8</td>
<td>45</td>
<td>74</td>
<td>37</td>
<td>10.2</td>
<td>11</td>
<td>25 – 30</td>
</tr>
<tr>
<td>40 ISO 08 B-2</td>
<td>P1/2" – 10 D</td>
<td>06 560 002</td>
<td>M10</td>
<td>55</td>
<td>96</td>
<td>48</td>
<td>13.9</td>
<td>20</td>
<td>30 – 34</td>
</tr>
<tr>
<td>50 ISO 10 B-2</td>
<td>P5/8" – 10 D</td>
<td>06 560 003</td>
<td>M10</td>
<td>70</td>
<td>126</td>
<td>63</td>
<td>16.6</td>
<td>20</td>
<td>34 – 46</td>
</tr>
<tr>
<td>60 ISO 12 B-2</td>
<td>P3/4" – 12 D</td>
<td>06 560 004</td>
<td>M12</td>
<td>80</td>
<td>148</td>
<td>72</td>
<td>19.5</td>
<td>35</td>
<td>40 – 52</td>
</tr>
</tbody>
</table>

Mounting instructions for Chain Drives

See also complementary mounting instructions on page 4.5.

Standard positioning

The ROSTA tensioning device should be placed on the slack-side of the chain drive, close by the smaller sprocket wheel in order to enlarge its contact-arc, therefore contact application from outer side of drive. In mounted position the tensioner-arm should stay close to parallel to the chain run, in drain direction. By extremely long chain drives it is recommendable to install several tensioners or the type “Boomerang®” in order to enlarge the slack compensation.

Reversible chain drive

By reversible chain transmissions it is recommendable to install a tensioner on each side of the chain-strands. Due to the alternate occurring of the slack, both tensioners should only be pre-tensioned up to max. 20°, in order to retain a reset-path of 10°, when strains are changing from slack span on working span in reversible applications.

Sprocket teeth in mesh

By the initial tensioning of the chain at least three teeth of the tensioner sprocket wheel should be in mesh with the rollers. The min. distance between sprocket wheel of the tensioner to the next sprocket wheel in the chain drive should be at least four chain-pitches.

Adjustment of chain-track

The wheel of the sprocket wheel set is adjustable according to the position of the chain drive track. The wheel is positioned between two nuts on the threaded shaft. In changing the adjustment band “R”, the track of the tensioner wheel can be set according to relevant strand course. After positioning of sprocket, retighten the two nuts on the side. The counter-nut “B” remains always tightened.
Tensioning roller standard type R (blue)

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>Max. speed [rpm]</th>
<th>Max. belt width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Torque hex nut [Nm]</th>
<th>Size SE</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 11</td>
<td>06 580 001</td>
<td>8000</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>85</td>
<td>M8</td>
<td>11</td>
<td>0.08</td>
</tr>
<tr>
<td>R 15/18</td>
<td>06 580 002</td>
<td>8000</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>6</td>
<td>16</td>
<td>7</td>
<td>85</td>
<td>M10</td>
<td>15/18</td>
<td>0.17</td>
</tr>
<tr>
<td>R 27</td>
<td>06 580 003</td>
<td>6000</td>
<td>55</td>
<td>60</td>
<td>60</td>
<td>8</td>
<td>17</td>
<td>8</td>
<td>85</td>
<td>M12</td>
<td>27</td>
<td>0.40</td>
</tr>
<tr>
<td>R 38</td>
<td>06 580 004</td>
<td>5000</td>
<td>85</td>
<td>80</td>
<td>90</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>85</td>
<td>M20</td>
<td>38</td>
<td>1.15</td>
</tr>
<tr>
<td>R 45</td>
<td>06 580 005</td>
<td>4500</td>
<td>130</td>
<td>90</td>
<td>135</td>
<td>10</td>
<td>27</td>
<td>12</td>
<td>85</td>
<td>M20</td>
<td>45</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Tensioning roller light type RL (black). Designed for light-duty drives.

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>Max. speed [rpm]</th>
<th>Max. belt width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Torque hex nut [Nm]</th>
<th>Size SE</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 11</td>
<td>06 580 901</td>
<td>6000</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>3</td>
<td>19</td>
<td>10</td>
<td>M8</td>
<td>11</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>RL 15/18</td>
<td>06 580 902</td>
<td>6000</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>6</td>
<td>21</td>
<td>9</td>
<td>M10</td>
<td>15/18</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>RL 27</td>
<td>06 580 903</td>
<td>4500</td>
<td>55</td>
<td>60</td>
<td>60</td>
<td>8</td>
<td>22</td>
<td>8</td>
<td>M12</td>
<td>27</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Instructions for belt drives

a) Modalities of tensioning

See also complementary mounting instructions on page 4.5.

Tensioning from “inside” of the belt drive with grooved pulley

- Installation in slack span of the belt drive, make sure that the belts are maintaining sufficient contact-arc on the driver- and driven-pulley.
- By extremely long centre distances between driver and driven pulley it is recommendable to use on the tensioner a deep-grooved pulley to avoid excessive slack beating.

Tensioning with flat roller on belt back

- The diameter of the flat tensioning roller should at least measure 2/3 of the diameter of the smallest pulley in the drive.
- The width of the tensioning roller should be at least 20% wider than the overall width of the belt set.
- Installation on the belt back in the slack span, make sure that the belts are maintaining sufficient contact-arc on the driver and driven pulley.
b) Selection of the adequate ROSTA Tensioner size

Selection table mentioning the most conventional V-belt types.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPZ, SPZ</td>
<td>10</td>
<td>8</td>
<td>56–71</td>
<td>20</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>75–90</td>
<td>22</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>95–125</td>
<td>28</td>
<td>28</td>
<td>18</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>XPZ, SPZ</td>
<td>80–100</td>
<td>13</td>
<td>80–100</td>
<td>28</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>106–140</td>
<td>10</td>
<td>38</td>
<td>30</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>150–200</td>
<td>8</td>
<td>45</td>
<td>36</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>≥ 200</td>
<td>5</td>
<td>50</td>
<td>40</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>XPB, SPB</td>
<td>112–160</td>
<td>16</td>
<td>112–160</td>
<td>50</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>170–224</td>
<td>13</td>
<td>170–224</td>
<td>60</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>236–355</td>
<td></td>
<td>236–355</td>
<td>77</td>
<td>62</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>≥ 355</td>
<td></td>
<td>81</td>
<td>65</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>XPC, SPC</td>
<td>224–250</td>
<td>22</td>
<td>224–250</td>
<td>87</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>245–355</td>
<td></td>
<td>245–355</td>
<td>115</td>
<td>92</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>≥ 375</td>
<td></td>
<td>144</td>
<td>115</td>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td>Z</td>
<td>10</td>
<td>6</td>
<td>56–100</td>
<td>10</td>
<td>5–7.5</td>
<td>11</td>
</tr>
<tr>
<td>A</td>
<td>13</td>
<td>8</td>
<td>80–140</td>
<td>10–15</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>10</td>
<td>125–200</td>
<td>20–30</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>22</td>
<td>12</td>
<td>200–400</td>
<td>40–60</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>D</td>
<td>32</td>
<td>19</td>
<td>355–600</td>
<td>70–105</td>
<td>18</td>
<td>27</td>
</tr>
</tbody>
</table>

* General basic selection criteria:

F resulting tensioning force by a pre-tension angle of 20° (see table page 4.5)

F_{I} initial operation test-force according guidelines of the belt manufacturer

z quantity of belts in drive

2 multiplier for the compensation of belt-slippage and/or of centrifugal force generated on belt strands.

** required test-force for belt deflection of 16 mm per 1000 mm of centre distance. The relevant deflection by shorter or longer centre distance has to be interpolated accordingly.

c) Control procedure for checking belt tension

Proceed according to the mentioned guidelines on page 4.5 and 4.10–4.11.

There are several instruments for checking with the adequate test-force the right tension on your frictional V-belt drive.

Don't make it with your thumb, you will make an estimation mistake and your belts will wear out prematurely!

Optikrik-tester from **Optibelt**

Spring scale tester from **Gates**

Infrared-frequency tester

Re-tension of belts: Generally, there is no re-tension maintenance service required, however we would recommend to check the test-force after some days of running-in with the required operational test-force (see table above).
ROSTA Tensioner Devices and Accessories to meet individual customer requirements

Support bracket type WS
For the easy mounting of all standardized ROSTA Tensioners (except SE 50).

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>suitable to Size SE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 11</td>
<td>06 590 001</td>
<td>11</td>
<td>6.5</td>
<td>5.5</td>
<td>7</td>
<td>7.5</td>
<td>30</td>
<td>13</td>
<td>11.5</td>
<td>27</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>46</td>
<td>35</td>
<td>10</td>
<td>0.08</td>
</tr>
<tr>
<td>WS 15</td>
<td>06 590 002</td>
<td>15</td>
<td>8.5</td>
<td>6.5</td>
<td>7</td>
<td>7.5</td>
<td>40</td>
<td>13</td>
<td>13.5</td>
<td>34</td>
<td>5</td>
<td>55</td>
<td>32</td>
<td>58</td>
<td>44</td>
<td>12</td>
<td>0.15</td>
</tr>
<tr>
<td>WS 18</td>
<td>06 590 003</td>
<td>18</td>
<td>10.5</td>
<td>8.5</td>
<td>9.5</td>
<td>10</td>
<td>50</td>
<td>15.5</td>
<td>16.5</td>
<td>43</td>
<td>6</td>
<td>70</td>
<td>38</td>
<td>74</td>
<td>55</td>
<td>20</td>
<td>0.28</td>
</tr>
<tr>
<td>WS 27</td>
<td>06 590 004</td>
<td>27</td>
<td>12.5</td>
<td>10.5</td>
<td>11.5</td>
<td>12.5</td>
<td>65</td>
<td>21.5</td>
<td>21</td>
<td>57</td>
<td>8</td>
<td>90</td>
<td>52</td>
<td>98</td>
<td>75</td>
<td>25</td>
<td>0.70</td>
</tr>
<tr>
<td>WS 38</td>
<td>06 590 005</td>
<td>38</td>
<td>16.5</td>
<td>12.5</td>
<td>14</td>
<td>15</td>
<td>80</td>
<td>24</td>
<td>21</td>
<td>66</td>
<td>8</td>
<td>110</td>
<td>55</td>
<td>116</td>
<td>85</td>
<td>35</td>
<td>0.90</td>
</tr>
<tr>
<td>WS 45</td>
<td>06 590 006</td>
<td>45</td>
<td>20.5</td>
<td>12.5</td>
<td>18</td>
<td>20</td>
<td>100</td>
<td>30</td>
<td>26</td>
<td>80</td>
<td>10</td>
<td>140</td>
<td>66</td>
<td>140</td>
<td>110</td>
<td>40</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Safety Sockets SS 27 and SS 38
By uneven surfaces and/or by paint coatings, which are giving insufficient friction locking, the positioning and further re-tensioning can be made with these standardized Safety Sockets.

<table>
<thead>
<tr>
<th>Type</th>
<th>Art. No.</th>
<th>suitable to Size SE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 27</td>
<td>06 618 400</td>
<td>27</td>
<td>104</td>
<td>130</td>
<td>60</td>
<td>13</td>
<td>8</td>
<td>79</td>
<td>0.35</td>
</tr>
<tr>
<td>SS 38</td>
<td>06 618 394</td>
<td>38</td>
<td>128</td>
<td>161</td>
<td>75</td>
<td>17</td>
<td>10</td>
<td>96.5</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Guide roller suspensions with tensioners SE and pre-tensioning devices VS

For the accurate definition of the required pre-tension and limitation of the roller travel we do recommend the use of our pre-tensioning clamp VS allowing angle adjustments from 0 – 15° (for all SE-sizes available).

DAT (Double Arm Tensioner)

For the transfer of very high tension-forces we do recommend to use double arm tensioners, avoiding any misalignment or fault of parallelism between tensioner housing and inner square-core-generating belt eating angular off-set of the tensioning pulley.
Elastic suspension of conveyor belt scrapers with tensioner devices SE

The ROSTA suspension is offering continuous and wear compensating cleaning pressure on conveyor belt scrapers to abrade small particle sizes.

For belt widths:
- 400–600 mm = 2 units SE 18
- 600–800 mm = 2 units SE 27
- 800–1000 mm = 2 units SE 38
- 1000–1300 mm = 2 units SE 45

Heavy-Duty belt and chain tensioners made out of Motorbase components

The ROSTA Motorbase elements are offering extremely high torques to tension heaviest chains and oversized belt drives.
Packaging for proper distribution and transport
We supply our standard tensioner devices up to size 27 in a box of 10 units.
Strained Applications!

A few examples: